

LAND CAPABILITY CLASSIFICATION FOR AGRICULTURE REPORT

Westport BESS

Proposed Development

April 2025

Prepared by: Patrick Stephenson BSc (Hons) Agriculture

Cor	itents	Page No.
1.0	Introduction	3
	1.1 Method	3
	1.2 Secondary Research	4
	1.3 Planning Policy	4
2.0	Location	5
	2.1 Site Characteristics	5
	2.2 Climate and Relief	6
3.0 4.0	Land Use Land Quality	7 7
5.0	Published Survey Information	9
6.0	Survey Results	9
7.0	Conclusion	10
	Appendix 1- Development Site Location	11
	Appendix 2 - ALC Map	12
	Appendix 3 - Sampling Points	13
	Appendix 4 - Sample Point Descriptions	14
	Appendix 5 – Sample Pit Location	17
	Appendix 6 – Soil Pit Details	19
	Appendix 7 – Soil Pit Description	19
	Appendix 8 – Laboratory Results	23

Appendix 8 – Laboratory Results

1.0 Introduction

Patrick Stephenson Limited was approached by Arthian Ltd. (Arthian) on behalf of Westport Energy Storage Ltd, to undertake a detailed Agricultural Land Capability Survey of the agricultural land quality at Westport, Killoch. (Grid Ref NS 48112089). The site is for the construction and operation of a Battery Energy Storage System (BESS) development and its associated infrastructure.

Patrick Stephenson has a degree in Agriculture from Newcastle University, has undertaken the Ministry of Agriculture, Fisheries and Food (MAFF)¹ Agricultural Soil and Land Classification course and has the passed the BASIS Soil and Water exam. He has over 30 years' experience in Environmental Impact Assessments and ALC studies.

1.1 Method

The method used to create this report was primary research in the form of a detailed-on site ALC survey, following the guidelines and criteria as stated in the documents listed below.

- The Revised Guidelines and Criteria for Grading the Quality of Agricultural Land DEFRA 1988¹
- The Macaulay Institute for Soil Research Aberdeen. 1984 Soil Survey of Scotland outlined the method and organisation for the grading of land².
- "Specifications for Topsoil" British Standards Institute
- Soil Survey of Scotland Staff (1970-1987). Soil maps of Scotland (partial coverage). Digital version 10 release. James Hutton Institute, Aberdeen. DOI 10.5281/zenodo. 6908156.

Survey work was carried out on a parcel of land covering approximately 18 ha. Soil was examined using a one metre handheld Dutch Auger at one hundred metre intervals and GPS located. The soil profile at each sample location was described using the *Soil Survey Field Handbook: Describing and Sampling Soil Profiles* (Ed. J.M. Hodgson, Cranfield University, 1997)². *The Macaulay Institute for Soil Research Aberdeen. 1984 Soil Survey of Scotland* outlined the method and organisation for the grading of the land. Representative soil samples were taken from the soil pits to confirm soil type and the physical and chemical characteristics (Appendix 8). Additional boring and soil pits were dug to confirm soil boundaries.

¹ The Ministry of Agriculture, Fisheries and Food (MAFF) was incorporated within the Department for Environment, Food and Rural Affairs (Defra) in June 2001

² Soil Survey Technical Monograph No 5 Soil Survey Handbook Describing and Sampling Soil Profiles J. M Hodgson 1974 1997

1.2 Secondary Research

Desktop research was conducted alongside the fieldwork as described in the method statement, to establish if the Proposed Development would have an effect on Prime Agricultural Land (PAL), which is defined by Macaulay as Grades 1, 2, 3 Division 1. The following sources were used to help in compiling the report.

- Soil Survey of Scotland 1950's to 1980's Sheet 14 and Pt 13.
- Goole viewed on Google Maps (Tele Atlas 2012)
- Natural England MAGIC web site (<u>http://magic.defra.gov.uk/website/magic</u>)
- Handbook Soil Survey of Scotland. Book 5.
- The Ordnance Survey Landranger 70 1:50,000
- The British Geological Survey Digital Mapping (49)
- Land Capabilty for Agriculture in Scotland.
- National Soil Map of Scotland.

1.3 Planning Policy

Current planning policy is found in the National Planning Framework 4 (NPF4) 4 (published 13th February 2023)³ and East Ayrshire Local Development Plan Volume 1⁴.

From NPF4 Policy 5: Soils:

- a) "Development proposals will only be supported if they are designed and constructed:
 - *i)* In accordance with the mitigation hierarchy by first avoiding and then minimising the amount of disturbance to soils on undeveloped land; and
 - *ii)* In a manner that protects soil from damage including from compaction and erosion, and that minimises soil sealing.
- b) Development proposals on prime agricultural land, or land of lesser quality that is culturally or locally important for primary use, as identified by the LDP, will only be supported where it is for:

³ Scottish Government: National Planning Framework 4. Available online: <u>National Planning Framework 4:</u> <u>Revised Draft</u>

⁴ East Ayrshire Council Local Development Plan. Available online: <u>LDP2 - Proposed PLan - Volume 1 - April 2024</u>

- *i)* Essential infrastructure and there is a specific locational need and no other suitable site;
- *ii)* Small-scale development directly linked to a rural business, farm or croft or for essential workers for the rural business to be able to live onsite.
- *iii)* The development of production and processing facilities associated with the land produce where no other local site is suitable.
- *iv)* The generation of energy from renewable sources or the extraction of minerals and there is secure provision for restoration; and

In all the above exceptions, the layout and design of the proposal minimises the amount of protected land that is required."

From East Ayrshire Local Development Plan Volume 1 Policy NE10: Protection of Agricultural Land:

"The Council will seek to ensure that there is no unacceptable and irreversible loss of prime quality and good quality, locally important agricultural land. Prime quality land is defined as land identified in classes 2 and 3.1 on the Macauley Land Capability for Agriculture maps of Scotland. Good quality, locally important agricultural land is defined as land identified in class 3.2 on these maps."

2.0 Location

"The Site" is located to the North of the A70 and above the disused Killoch mine centred on Grid Ref NS 48112089.

2.1 Site characteristics

The topographical survey shows that the site slopes from approximately 168.49 metres Above Ordnance Datum (m AOD) in the south-east in the north-eastern boundary to 133.61m AOD in the northern boundary. The geology of the area is described in the *Soils of Scotland* as having parent material of Coal Measure Marls and being Non-Calcareous Marls. The British Geological Survey describes the geology as Mauchline volcanic formation with igneous bedrock. This is further supplemented with superficial cover of Till Devensian diamicton sedimentary. The described soil types are Drongan soils imperfectly drained, and Killoch poorly drained.

2.2 Climate and Relief

Climate has a major, and in places overriding, influence on land quality affecting both the range of potential agricultural uses and the cost and level of production.

There is published agro-climatic data for Scotland provided by the Meteorological Office. Data for the area as used by The Macauley Institute provided the following data.

Grid Reference	NS 48112089
Altitude (ALT)	163 M
Average Annual Rainfall (AAR)	1072 mm
Accumulated temperature above 0°C January- June Lower Quartile Value	1630
Field Capacity Days	232

Table 1 - Agro-Climatic Data (Girvan Met Station nearest)

The main parameters used in assessing the climatic limitation are average annual rainfall (AAR), as a measure of overall wetness; and accumulated temperature, as a measure of the relative warmth of a locality. The surveyed site would have restrictions and could not be classified as Grade 1 and 2

Most of the site is not within a flood risk area however, Trabboch Burn will have areas of localised flooding.

3.0 Land Use

The current cropping is grassland.

4.0 Land Quality

The Macaulay Institute for Soil Research Aberdeen. 1984 Soil Survey of Scotland outlined the method and organisation for the grading of land. This amalgamated the data available and completed the survey of all land in Scotland. The Lowland productive areas had largely been covered at a scale of 1:63 360 maps. These maps were made by taking samples of between 5 and 15 per square kilometre and were used to comply the Land Use Capability maps and soil formations. The 1984 amalgamations produced an ALC system classifies land into 1 through to 7 classes, with Grade 3 and 4 having 2 divisions and Grades 5 and 6 three divisions. Prime Agricultural Land (PAL) is classed as land in Grades 1, 2, and 3 Division 1. Although the 1984 survey provides good guidance of the likelihood of finding PAL, for planning purposes a detailed PAL survey should be carried out. The land surveyed only contained land within the range Class 4.

PAL is based on the long-term physical limitations of land for agricultural use. Factors affecting the Grade are climate, site and soil characteristics.

- Climate: temperature and rainfall; aspects, exposure and frost risk
- Site: gradient, micro relief and flood risk
- **Soil:** texture, structure, depth and stoniness; chemical properties which cannot be corrected

The combination of climate and soil factors determines soil wetness and droughtiness. Wetness and droughtiness influence the choice of crops grown and the level and consistency of yields, as well as use of land for grazing livestock. The PAL is also concerned with the inherent potential of land under a range of farming systems. The current agricultural use, or intensity of use, does not affect the PAL Grade. The physical limitations of land have four main effects on the way land is farmed. These are:

- the range of crops which can be grown
- the level of yield
- the consistency of yield
- the cost of obtaining the crop

Higher Grade land should provide greater flexibility in the range of crops that can be grown (its 'versatility') and require lower inputs. The higher Grades (1, 2, 3 Division 1) also consider the ability to produce consistently high yields of a narrower range of crops.

Definitions of Land Classification Grades

Land suited to arable cropping.

Class 1 - Land capable of producing a very wide range of arable crops Cropping is highly flexible and includes the more exacting crops such as winter harvested vegetables. The levels of yield are consistently high.

Class 2- Land capable of producing a wide range of arable crops Cropping is very flexible and a wide range of crops may be grown but difficulties with winter vegetables may be encountered in some years. The level of yield is high but less consistently obtained than in Class 1.

Class 3 - Land capable of producing a moderate range of crops.

Division I - The land can produce consistently high yields of a narrow range of crops (cereals and grass) or moderate yields of a wider range (potatoes, field beans and other vegetables and root crops). Grass leys of short duration are common.

Division 2 - The land is capable of average production, but high yields of grass, barley and oats are often obtained. Grass leys are common and longer than in Division 1.

Class 4 - Land capable of producing a narrow range of crops.

Division 1 - Long ley grassland is commonly encountered but the land can produce some forage crops and cereal for stock.

Division 2 - Primarily grassland with some limited potential for other crops.

5.0 Published Survey Information

The Provisional PAL amalgamated organisation and method document 1984 carried out by *Macauley Institute for Soil Research Aberdeen*, (updated 19/06/2024) showed the whole surveyed site to be Grade 4 Division 1 and 2. These reports are based on assessments 1:65,000 or 1:250,000 and are purely for guidance purposes.

6.0 Survey Results

The field survey work was carried out in accordance with the method described in the PAL Guidelines. The presence of stones restricted auger borings to a maximum of 1000mm. Confirmation of soil types and physical details was supported by the laboratory results in Appendix 8.

The following soil grades were found within the survey area. Appendix 3 has a description of the sample point profiles. Appendix 4 has a map showing the respective grades and details of auger boring points. Table 3 shows a summary of the ALC grades found on the site as shown in Appendix 2.

Grade/Subgrade	Approximate Area Ha	Area %
4 Division 1	12	67.00
4 Division 2	6	33.00
Total	18	100

Table 3 Summary of ALC Grades

The detailed survey showed that the topsoil's were predominantly silty sandy loam, with smaller areas of sandy clay loam and sandy loam. The topsoil depth varied between 250 mm and 350 mm. Subsoils varied between 250 and 1000 mm in depth across the site. Sub-soils were predominantly coarse sandy clay loams and clay loams. Medium stones were common on the sloped area in the north of the site. The main grade limits were wetness, slope and topsoil depth.

4 Division 1:

This was the larger part of the site and was located to the north of the site down to Trabboch Burn. Lighter soils generally varying from sandy loam to sandy silty loam. Stones were more common and often depth was restricted by the presence of stones. There was a distinct boundary to the subsoil and gleying was common at depth. Occasional arable crops maybe possible. Grade restricted by wetness class, slope, and stone content.

4 Division 2

These soils are sandy silty loams to sandy clay loams water was common down the profile. Subsoils were clay loam dominated and had gleying throughout. Stones less common but present along with coal and iron ore particles. Less suitable for arable cropping. Grade restricted by wetness class

7.0 Conclusion

The published works shows the entire site to be 4 division 1 and 2. The detailed survey confirms that both Class 4 Division 1 and 2 dominate the site. Soil makeup and wetness are the divining factors for the grade distinction. From a local and regional basis the loss of 18 ha of Class 4 land would not be a significant factor.

Appendix 1 – Location of Development Site

Appendix 2 - Detailed ALC map

Key

Grade 4 Division 1	
Grade 4 Division 2	
Non-Agricultural	

Appendix 3 Sample points

Appendix 4 - Sampling Point Descriptions

SOIL PROFILE SURVEY RESULTS

Soil Type Key: O- ORGANIC C- CLAY S- SAND L- LOAM Z- SILT P- PEAT

Hole	Grid ref	Texture	Depth MM	Stones Comments	Wetness Class
1 166M	N55° 27. 418	SZL /SCL	0-300	Mottled	IV
	W004° 24.502	SCL	300-450	Small medium stones Coarse	
		SCL-CL	450-1000	sandy loam Gleyed throughout coal pieces	
2 169M	N55° 27. 426	SZL	0-300	Mottled	IV
103101	W004° 24. 418	SCL SCL/CL	300-450 450-1000	Small stones Coarse sandy loam Gleyed throughout coal pieces	
3	N55° 27. 434	SZL	0-300	Mottled	IV
169M	W004° 24. 312	SCL	300-450	Small stones Coarse sandy	
		SCL/ZL	450-1000	loam Gleyed throughout coal pieces	
4	N55° 27. 442	SZL	0-250	Small Stones	IV
170M	W004° 24.213	SCL	250-500	Coarse sandy loam gleyed and coal pieces	
		CL		Strongly gleyed with coal	

5					
	N55° 27. 450	SZL /SCL	0-30	Small Stones	
169M	W004° 24. 103	SCL/CL	300-700	Small medium stones Coarse sandy loam. Coal gleyed	
6				8.0700	
165M	N55° 27. 456	SZL/SCL	0-350		
	W004° 23. 999	SCL- CL	350-700	Coarse sandy Ioam Leading to clay Ioam Coal	
			700+	Heavily gleyed	
7 163M	N55° 27. 510	SL/SZL	0-350	Mottling	III
	W004° 24. 016	SZL/SCL	350-500	Coarse sandy clay loam with pocket of SL	
			500-1000	Coarse SCL Coal Gleyed	
8					III
	N55° 27. 572	SL/SZL	0-350		
155M	W004° 24. 041	SCL	350-500	Small medium stones Coal and gleyed	
		Coarse SCL	500+		
9		SL/SZL	0-250	Shallow	
	N55° 27. 634	- , -			
144M	W004° 24. 088	SCL	250-600	Small stones Coarse sandy Ioam. Mottled	
10					
	N55° 27. 507	SZL	0-300	Small Stones	
150M	W004° 24. 114	CL Glacial Till	300-500	Gleyed mottled Coal	
			500-750	Coarse sandy clay loam	
11					III
	N55° 27. 515	SL/SZL	0-300	Small Stones	
163M	W004° 24. 163	Coarse Sandy Clay Loam	300- 500	Small stones Coarse sandy Ioam Gleyed and Coal	

			500+ stones	Medium to large Stones	
12	N55° 27. 543	SL/SZL	0-300	Small Stones	
159M	W004° 24. 244	SZL	300-500	Small medium stones Coarse	
	11004 24.244	SZL	500+	sandy loam. Gleyed and coal Limited by	
			5001	Medium stones	
	N55° 27. 500	SZL	0-35		IV
165M	W004° 41. 306	SCL/CL Glacial Till	35+	Coarse sandy loam to clay loam gleyed and coal	
	N55° 27. 529	SL/SZL	0-300		
159M	W004° 24. 365	SCL/CL	300-600	Coarse sandy loam to clay loam gleyed and coal	
15					
163M	N55° 27. 483	SZL	0-300	Small medium	
	W004° 24. 418	CL	300-600	stones Coarse sandy loam. Gleyed and coal	
16					IV
160M	N55° 27. 506	SL/SZL	0-300	Medium Stones	
100111	W004° 24. 481	SCL	300-500	Small medium stones Coarse	
		CL	500-800	sandy loam. Gleyed and coal	
	N55° 27. 443	SZL /SCL	0-300	Mottled Small medium	IV
166M	W004° 24. 506	SCL	300-450	stones Coarse sandy loam	
		SCL-CL	450-1000	Gleyed throughout coal pieces	

Appendix 5 Soil Pit Location

<u>Appendix 6</u>

Soil pit details

Pit	Texture	Depth cm	Colour	Munsell	Comments	AP WW	AP Pots	Wetness	Grade
1	Sandy	0-30	Light	Value 5	Larger	110	94	IV	3 Div
Тор	Silty		Brown	Chroma	stones				1
	Loam			4	greater				
					than 5%				
					rounded				
					few				
					mottles				
					fine to				
					medium				
					granular				
					peds				
1	Clay	30-50	Reddish,	Value 6	Distinct				
Sub	Loam		Brown	Chroma	boundary				
				12	small and				
					large				
					stones 5-				
					10% coarse				
					peds Fine				
					Mottling.				
					Gleyed at				
					50 Till at				
					depth				
2	Sandy	0-40	Light	Value 5	Very	120	98	III	2
Тор	Silty		Brown	Chroma	slightly				
	Loam			4	stoney,				
					medium				
					granular				
					peds, slight				
L					mottling				
2	Clay	40-60	Reddish	Value 6	Slightly				
Sub	Loam		to light	Chroma	stoney,				
			Brown	12	fine to				
					Medium to				
					angular				
					blocky				
					structure				
					no gleying				

Appendix 7 - Soil Pit Description

Pit 1 Topsoil

Very few stones fine granular peds, slight mottling, distinct sub soil boundary. Good root penetration and pore space.

Pit 1 Subsoil

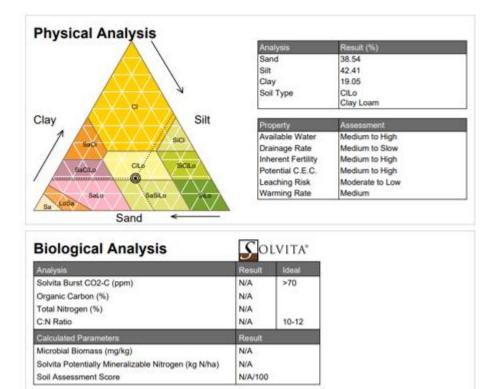
Distinct boundary fine to medium granular peds. Limited pore space gleyed and distinctly mottled throughout. Limited rooting.

Pit 2 Topsoil

Fine granular ped structure. Fine mottling with some stones small and medium in size. Roots throughout. Good pore space.

Pit 2 Subsoil

Slightly stoney, fine to Medium to angular blocky structure gleying throughout with mottling through profile. Some pore space roots present.


Appendix 8 - Lab results

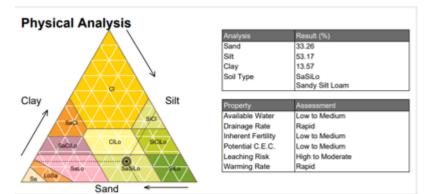
Pit 1 Topsoil

Customer	KILLOCH	Distributor	MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH
Sample Ref	PIT 1 TOP	Date Received	14/10/2024 (Date Issued: 30/10/2024)
Sample No Crop	G093440/01 GRAZED GRASS (CATTLE)	Area	18

Analysis	Result	Guideline	Interpretation	Comments
рН	6.3	6.0	Normal	Adequate level. Maintain pH to ensure optimum nutrient availability and ideal conditions for an active soil biology.
Phosphorus (ppm)	35	16	High	(Index 3) Adequate level.
Potassium (ppm)	65	121	Low	(Index 1) 30 kg/ha K2O (24 units/acre). Avoid applications in spring if there is a history of Hypomagnesaemia.
Magnesium (ppm)	184	51	Very High	(Index 4) Possible interference with availability of Potassium.
Organic Matter (LOI) (%)	7.0	3.0	Normal	Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels.
Organic Carbon (LOI) (%)	4.1	1.7	Normal	Normal (See Organic Matter comment). Organic carbon is the measurable component of organic matter. Organic carbon and organic matter can be broken into distinct 'pools'. These pools include labile/active (particulate, almost entirely decomposed, readily available microbe foodsource), humus carbon (decomposing carbon) and recalcitrant organic carbon (resistant to decomposition). Each of these pools are involved in different soil processes (see: Active Carbon).

Pit 1 Subsoil

Customer	KILLOCH	Distributor	MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH
Sample Ref	PIT 1 SUB	Date Received	14/10/2024 (Date Issued: 30/10/2024)
Sample No Crop	G093440/02 GRAZED GRASS (CATTLE)	Area	18


Analysis	Result	Guideline	Interpretation	Comments
рН	6.4	6.0	Normal	Adequate level. Maintain pH to ensure optimum nutrient availability and ideal conditions for an active soil biology.
Phosphorus (ppm)	5	16	Very Low	(Index 0) 80 kg/ha P2O5 (64 units/acre).
Potassium (ppm)	40	121	Very Low	(Index 0) 60 kg/ha K2O (48 units/acre). Avoid applications in spring if there is a history of Hypomagnesaemia.
Magnesium (ppm)	258	51	Very High	(Index 5) Possible interference with availability of Potassium.
Organic Matter (LOI) (%)	2.4	3.0	Slightly Low	Slightly low. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Investigate soil conditons to establish if soil management practices can improve levels of organic matter.
Organic Carbon (LOI) (%)	1.4	1.7	Slightly Low	Slightly Low (See Organic Matter comment). Organic carbon is the measurable component of organic matter. Organic carbon and organic matter can be broken into distinct 'pools'. These pools include labile/active (particulate, almost entirely decomposed, readily available microbe foodsource), humus carbon (decomposing carbon) and recalcitrant organic carbon (resistant to decomposition). Each of these pools are involved in different soil processes (see: Active Carbon).

Pit 2 Topsoil

Customer	KILLOCH	Distributor	MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH
Sample Ref	PIT 2 TOP	Date Received	14/10/2024 (Date Issued: 30/10/2024)
Sample No Crop	G093440/03 GRAZED GRASS (CATTLE)	Area	18

Analysis	Result	Guideline	Interpretation	Comments
рН	6.0	6.0	Normal	Adequate level. Maintain pH to ensure optimum nutrient availability and ideal conditions for an active soil biology.
Phosphorus (ppm)	16	16	Normal	(Index 2) 20 kg/ha P2O5 (16 units/acre).
Potassium (ppm)	64	121	Low	(Index 1) 30 kg/ha K2O (24 units/acre). Avoid applications in spring if there is a history of Hypomagnesaemia.
Magnesium (ppm)	249	51	Very High	(Index 4) Possible interference with availability of Potassium.
Organic Matter (LOI) (%)	4.7	3.0	Normal	Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels.
Organic Carbon (LOI) (%)	2.7	1.7	Normal	Normal (See Organic Matter comment). Organic carbon is the measurable component of organic matter. Organic carbon and organic matter can be broken into distinct 'pools'. These pools include labile/active (particulate, almost entirely decomposed, readily available microbe foodsource), humus carbon (decomposing carbon) and recalcitrant organic carbon (resistant to decomposition). Each of these pools are involved in different soil processes (see: Active Carbon).

Biological Analysis	<u>5</u> 01	VITA°	
Analysis	Result	Ideal	
Solvita Burst CO2-C (ppm)	N/A	>70	
Organic Carbon (%)	N/A		
Total Nitrogen (%)	N/A		
C:N Ratio	N/A	10-12	
Calculated Parameters	Result		
Microbial Biomass (mg/kg)	N/A	N/A	
Solvita Potentially Mineralizable Nitrogen (kg N/ha)	g N/ha) N/A		
Soil Assessment Score	N/A/100		

Pit 2 Subsoil

Customer	KILLOCH	Distributor	MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH
Sample Ref	PIT 2 SUB	Date Received	14/10/2024 (Date Issued: 30/10/2024)
Sample No Crop	G093440/04 GRAZED GRASS (CATTLE)	Area	18

Analysis	Result	Guideline	Interpretation	Comments
рН	6.6	6.0	Normal	Adequate level. Maintain pH to ensure optimum nutrient availability and ideal conditions for an active soil biology.
Phosphorus (ppm)	2	16	Very Low	(Index 0) 80 kg/ha P2O5 (64 units/acre).
Potassium (ppm)	65	121	Low	(Index 1) 30 kg/ha K2O (24 units/acre). Avoid applications in spring if there is a history of Hypomagnesaemia.
Magnesium (ppm)	391	51	Very High	(Index 6) Possible interference with availability of Potassium.
Organic Matter (LOI) (%)	2.3	3.0	Slightly Low	Slightly low. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Investigate soil conditons to establish if soil management practices can improve levels of organic matter.
Organic Carbon (LOI) (%)	1.3	1.7	Slightly Low	Slightly Low (See Organic Matter comment). Organic carbon is the measurable component of organic matter. Organic carbon and organic matter can be broken into distinct 'pools'. These pools include labile/active (particulate, almost entirely decomposed, readily available microbe foodsource), humus carbon (decomposing carbon) and recalcitrant organic carbon (resistant to decomposition). Each of these pools are involved in different soil processes (see: Active Carbon).